Weak Inverse Shadowing and Genericity

نویسندگان

  • Taeyoung Choi
  • Sungsook Kim
  • Keonhee Lee
چکیده

We study the genericity of the first weak inverse shadowing property and the second weak inverse shadowing property in the space of homeomorphisms on a compact metric space, and show that every shift homeomorphism does not have the first weak inverse shadowing property but it has the second weak inverse shadowing property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the shadowing property of nonautonomous discrete systems

In this paper we study shadowing property for sequences of mappings on compact metric spaces, i.e. nonautonomous discrete dynamical systems. We investigate the relation of  weak contractions with shadowing and h-shadowing property.

متن کامل

Continuous and Inverse Shadowing for Flows

We define continuous and inverse shadowing for flows and prove some properties. In particular, we will prove that an expansive flow without fixed points on a compact metric space which is a shadowing is also a continuous shadowing and hence an inverse shadowing (on a compact manifold without boundary).

متن کامل

Continuous Inverse Shadowing and Hyperbolicity

We study the concepts of continuous shadowing and continuous inverse shadowing with respect to various classes of admissible pseudo orbits, and characterize hyperbolicity and structural stability using the notion of continuous inverse shadowing.

متن کامل

Shadowing and inverse shadowing in set-valued dynamical systems. Hyperbolic case

We introduce a new hyperbolicity condition for set-valued dynamical systems and show that this condition implies the shadowing and inverse shadowing properties.

متن کامل

Various Inverse Shadowing in Linear Dynamical Systems

We give characterizations of linear dynamical systems via various inverse shadowing properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006